Difference between revisions of "Main Page"

From Elcano Project Wiki
Jump to navigation Jump to search
(Splitting up the software development section, as a start to explaining our Arduino setup, and GitHub usage.)
Line 52: Line 52:
Using Open-source CARLA platform with a go-between board allows simulation.
Using Open-source CARLA platform with a go-between board allows simulation.
== [[Software development procedures]]
== Software development procedures ==
=== [[Software repositories]] ===
=== [[Software repositories]] ===

Revision as of 23:01, 9 October 2019

Welcome to the Elcano Project Wiki

As the title says, WELCOME TO THE ELCANO PROJECT! Over the past few years many different teams have been working hard to create Cheap and Modular autonomy at the University of Washington Bothell. We are currently working on our first two prototypes which are now in the form of tricycles. With the use of affordable microcontrollers, such as the Arduino Mega 2560 and Raspberry PI, we are working towards creating Autonomy for anyone to rebuild anywhere, and that under $2000 and fully open-source. But we don't plan to stop there, no. That is just the first step in reaching our ultimate goal, which is making our systems applicable to any desired ground vehicles, such as cars and other vehicles. Autonomy is nothing new, in fact it has been around for over 40 years, the difference is that now we have the ability to make it available for anyone who desires furthering their knowledge or simply finding a safer way to work.

To edit articles or upload files, please create an account and request editing rights from a member of the "bureaucrat" group.

For editing help visit https://www.mediawiki.org/wiki/Help:Editing_pages or https://www.mediawiki.org/wiki/Help:Formatting.



Basic concept of how the Elcano Project vehicle works.

System Architecture

How processors connect to sensors, each other, actuators, and other hardware. Includes processor-to-processor communication protocol.

Communication (CAN Bus)

How processors exchange data on the vehicle and a description of data packet contents.

Power System

How different modules connect to the batteries or power subsystem hardware.

Low Level

How the Low Level system uses inputs to control actuators to steer, move, and stop the vehicle.

High Level

How the High Level system uses stored maps and inputs from navigational sensors to formulate movement instructions sent to Low Level.


Human control of trike movements through Low Level using hardware connected to Low Level by a radio communication link (drive by radio). Includes on-board controls (drive by wire).



The front wheel angle detector.


How the sonar subsystem connected to High Level works.


How the lidar subsystem connected to High Level works.


How the camera and vision subsystem connected to High Level works.


Board Diagrams

Images of Elcano Project's printed circuit boards for reference. PCB source files and schematics are maintained and stored at [1].


Using Open-source CARLA platform with a go-between board allows simulation.

Software development procedures

Software repositories

What's in each of our GitHub repositories.

Arduino software

Getting started; references; development software. Dealing with libraries and different parameters for each vehicle.

Using Git and GitHub

Practices for maintaining code and source files on Elcano Project's GitHub repositories.


These are media files (pictures, videos, etc.) that are part of the project, but are not maintained under version control.

Elcano Project Main Website